
remote sensing

Article

A Convolutional Neural Network-Based 3D Semantic
Labeling Method for ALS Point Clouds

Zhishuang Yang, Wanshou Jiang ,* ID , Bo Xu ID , Quansheng Zhu , San Jiang ID

and Wei Huang

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430000, China; tcyzs@whu.edu.cn (Z.Y.); lmars_xubo@whu.edu.cn (B.X.);
zhuqs@whu.edu.cn (Q.Z.); jiangsan870211@whu.edu.cn (S.J.); hw1006@whu.edu.cn (W.H.)
* Correspondence: jws@whu.edu.cn; Tel.: +86-27-68778092 (ext. 8321)

Received: 1 August 2017; Accepted: 8 September 2017; Published: 12 September 2017

Abstract: 3D semantic labeling is a fundamental task in airborne laser scanning (ALS) point clouds
processing. The complexity of observed scenes and the irregularity of point distributions make this
task quite challenging. Existing methods rely on a large number of features for the LiDAR points
and the interaction of neighboring points, but cannot exploit the potential of them. In this paper,
a convolutional neural network (CNN) based method that extracts the high-level representation
of features is used. A point-based feature image-generation method is proposed that transforms
the 3D neighborhood features of a point into a 2D image. First, for each point in the ALS data, the
local geometric features, global geometric features and full-waveform features of its neighboring
points within a window are extracted and transformed into an image. Then, the feature images are
treated as the input of a CNN model for a 3D semantic labeling task. Finally, to allow performance
comparisons with existing approaches, we evaluate our framework on the publicly available datasets
provided by the International Society for Photogrammetry and Remote Sensing Working Groups
II/4 (ISPRS WG II/4) benchmark tests on 3D labeling. The experiment results achieve 82.3% overall
accuracy, which is the best among all considered methods.

Keywords: deep convolutional neural network; ALS point clouds; semantic 3D labeling; feature image

1. Introduction

The classification of 3D point clouds has generated great attention in the fields of computer
vision, remote sensing, and photogrammetry. In recent decades, airborne laser scanning (ALS) has
become important in acquiring 3D point clouds. The ALS point clouds allow an automated analysis
of large areas in terms of assigning a (semantic) class label to each point of the considered 3D point
cloud. Researchers have mainly focused on using supervised statistical methods to classify the data
because these methods are more flexible for handling variations in the appearance of objects compared
to model-based approaches. In addition to generative classifiers to model the joint distribution
of the data and labels [1], modern discriminative methods such as Adaboost [2], Support Vector
Machine (SVM) [3] and Random Forest (RF) [4,5] are used. For example, Chehata [6] applied the
RF to classify full-waveform LiDAR data. Various multi-echo and full-waveform LiDAR features
can be processed and Random Forests are used since they provide an accurate classification and
run efficiently on large datasets. Mallet [7] used a point-based multi-class SVM for urban area
LiDAR data classification. A support vector machine classifier was used to label the point cloud
according to various scenarios based on the rank of the features. He also used the SVM [8] to study
the potential of full-waveform data through the automatic classification of urban areas in building,
ground, and vegetation points. Weinmann [9] used 10 different supervised classifiers accompanied by

Remote Sens. 2017, 9, 936; doi:10.3390/rs9090936 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-3162-0566
https://orcid.org/0000-0001-6049-8005
https://orcid.org/0000-0002-7799-650X
http://dx.doi.org/10.3390/rs9090936
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2017, 9, 936 2 of 17

7 neighborhood definitions, 21 geometric features and 7 approaches for feature selection to classify
the 3D scene. The end-users would not only observe the performance of single classifiers but also
see a comprehensive comparison. However, both methods classify each point independently without
considering the labels of its neighborhood.

Thus, spatial regularization tools are added into the classification period. Spatial dependencies
between the object classes can be trained to improve the results using methods such as Markov random
fields (MRF) [10] and conditional random fields (CRF) [11]. Anguelov [12] used a subclass of the MRF
to classify a terrestrial point cloud into four object classes. The MRF models incorporate a large set
of diverse features and enforce the preference that neighboring points have the same classification
label. Shapovalov [13] used non-associative Markov networks for the point cloud classification and
showed how to perform a tractable MAP inference in a network with non-attractive pairwise potentials
to obtain better results. By defining classes of 3D geometric surfaces and making use of the CRF,
Rusu [14] classified the 3D point clouds. Niemeyer [15] used the CRF for urban scene classification
with full waveform LiDAR data. A Random Forest classifier was integrated into a CRF framework,
showing that considering the context and using a large number of features is beneficial.

Although the existing methods have performed well in ALS point clouds classification,
further development is still needed to increase the potential of point-based features. We want to
utilize fully the limited features that are extracted from neighboring points around the labeled point,
and apply these features to train a deep neural network that will be used for the future use of unlabeled
point clouds. Deep convolutional neural networks (CNNs) [16–19] play an important role in deep
learning theory for their ability to extract high-level representations through compositions of low-level
features [20]. Boulch [21] applied CNNs to point cloud labeling. He picked several suitable snapshots
of the point cloud, generated the red–green–blue and geometric composite images, and then performed
a pixel-wise labeling of each pair of 2D snapshots using convolutional neural networks. Finally, a fast
back-projection of the label predictions was performed in 3D space to label every point. This method
obtained the best results on the semantic-8 [22] dataset. The points were scanned statically with
state-of-the-art equipment and contain very fine details, giving a point density that is much higher
than most of the ALS point clouds. An appropriate way that was proposed for handling this was
when Hu [23] used the CNN to generate the digital terrain model (DTM) for the ALS point clouds.
A point-to-image framework was built such that for every point with spatial context, the neighboring
points within a window are extracted and transformed into an image. Then, the classification of a point
can be treated as the classification of an image. Using these images to train a CNN model, this method
achieved a satisfactory performance in the DTM-generation task, which is a binary classification
problem. However, there are still some problems in Hu’s method when facing additional object classes
of interest.

In the present study, we improve Hu’s method in the image-generation procedure. We obtain
training samples from the labeled ALS point clouds. Unlike Hu’s method, we propose a single
point-based method to generate the feature image. For each point in the ALS data, the image is
generated from its neighboring points using their local geometric features, global geometric features
and full-waveform features. Then, we train the CNN model using the labeled data and use the model
for the final semantic labeling task.

The rest of this paper is organized into four additional sections. Section 2 introduces our
methodology. We present the experimental results in Section 3. These results are discussed in detail in
Section 4. We provide concluding remarks and suggestions for future work in Section 5.

2. Methodology

The workflow of our method is shown in Figure 1. First, we transfer the classification of a point
to the classification of its corresponding feature image. Then, we train a CNN model with the feature
images of the labeled points. Finally, we use the trained model to classify the unlabeled data.

Remote Sens. 2017, 9, 936 3 of 17

Remote Sens. 2017, 9, 936 3 of 17

Figure 1. The workflow of the proposed method.

2.1. Convolutional Neural Network

The architecture of the used CNN model is shown in Figure 2. We implemented the CNN using

Caffe deep learning networks [24]. A CNN is usually composed of convolutional layers and pooling

layers (denoted as Conv and pool here). These layers can help the network extract hierarchical

features from the original inputs, followed by several fully connected layers (denoted as FC here) to

perform the classification.

Figure 2. The architecture of the deep CNN used.

Considering a CNN with K layers, we denote the kth output layer as , where

and the input data are denoted as . In each layer, there are two parts of the parameters for us to

train, of which the weight matrix connects the previous layer with and the bias vector .

As shown in Figure 2, the input data is usually followed with the convolution layer. The

convolution layer first performs a convolution operation with the kernels . Then, we add the

bias vector with the resulting feature maps. After obtaining the features, a pointwise non-linear

activation operation is usually performed subsequently. The size of the convolution kernels

in our model is 3 × 3. A pooling layer (e.g., taking the average or maximum of adjacent locations) is

followed, which uses the non-overlapping square windows per feature map to select the dominant

features. The pooling layer can reduce the number of network parameters and improve the

robustness of the translation. This layer offers invariance by reducing the resolution of the feature

maps, and each pooling layer corresponds to the previous convolutional layer. The neuron in the

pooling layer combines a small N × 1 patch of the convolution layer. The most common pooling

operation is max pooling, which we chose for our experiments. The entire process can be formulated

as

Image generation

Image generation

Unlabeled point clouds

Labeled point clouds

Unlabeled images

Labeled images

Classification Result

CNN

model

Rebalancing result of the point clouds

Rebalancing

Applying Classifying

3*3

Conv

+

BN

+

ReLU

2*2

Max

Pool

3*3

Conv

+

BN

+

ReLU

Input

128

*

128

*

3

32

*

32

*

64

64

*

64

*

32

2*2

Max

Pool

3*3

Conv

+

BN

+

ReLU

2*2

Max

Pool

16

*

16

*

128

3*3

Conv

+

BN

+

ReLU

16

*

16

*

128

3*3

Conv

+

BN

+

ReLU

8

*

8

*

128

2*2

Max

Pool

1

*

1

*

4096

BN

+

ReLU

1

*

1

*

4096

BN

+

ReLU

1

*

1

*

9

kH 1, ,k K

0H

k
W

-1kH kH
k

b

k
W

k
b

 g

Figure 1. The workflow of the proposed method.

2.1. Convolutional Neural Network

The architecture of the used CNN model is shown in Figure 2. We implemented the CNN using
Caffe deep learning networks [24]. A CNN is usually composed of convolutional layers and pooling
layers (denoted as Conv and pool here). These layers can help the network extract hierarchical features
from the original inputs, followed by several fully connected layers (denoted as FC here) to perform
the classification.

Remote Sens. 2017, 9, 936 3 of 17

Figure 1. The workflow of the proposed method.

2.1. Convolutional Neural Network

The architecture of the used CNN model is shown in Figure 2. We implemented the CNN using

Caffe deep learning networks [24]. A CNN is usually composed of convolutional layers and pooling

layers (denoted as Conv and pool here). These layers can help the network extract hierarchical

features from the original inputs, followed by several fully connected layers (denoted as FC here) to

perform the classification.

Figure 2. The architecture of the deep CNN used.

Considering a CNN with K layers, we denote the kth output layer as , where

and the input data are denoted as . In each layer, there are two parts of the parameters for us to

train, of which the weight matrix connects the previous layer with and the bias vector .

As shown in Figure 2, the input data is usually followed with the convolution layer. The

convolution layer first performs a convolution operation with the kernels . Then, we add the

bias vector with the resulting feature maps. After obtaining the features, a pointwise non-linear

activation operation is usually performed subsequently. The size of the convolution kernels

in our model is 3 × 3. A pooling layer (e.g., taking the average or maximum of adjacent locations) is

followed, which uses the non-overlapping square windows per feature map to select the dominant

features. The pooling layer can reduce the number of network parameters and improve the

robustness of the translation. This layer offers invariance by reducing the resolution of the feature

maps, and each pooling layer corresponds to the previous convolutional layer. The neuron in the

pooling layer combines a small N × 1 patch of the convolution layer. The most common pooling

operation is max pooling, which we chose for our experiments. The entire process can be formulated

as

Image generation

Image generation

Unlabeled point clouds

Labeled point clouds

Unlabeled images

Labeled images

Classification Result

CNN

model

Rebalancing result of the point clouds

Rebalancing

Applying Classifying

3*3

Conv

+

BN

+

ReLU

2*2

Max

Pool

3*3

Conv

+

BN

+

ReLU

Input

128

*

128

*

3

32

*

32

*

64

64

*

64

*

32

2*2

Max

Pool

3*3

Conv

+

BN

+

ReLU

2*2

Max

Pool

16

*

16

*

128

3*3

Conv

+

BN

+

ReLU

16

*

16

*

128

3*3

Conv

+

BN

+

ReLU

8

*

8

*

128

2*2

Max

Pool

1

*

1

*

4096

BN

+

ReLU

1

*

1

*

4096

BN

+

ReLU

1

*

1

*

9

kH 1, ,k K

0H

k
W

-1kH kH
k

b

k
W

k
b

 g

Figure 2. The architecture of the deep CNN used.

Considering a CNN with K layers, we denote the kth output layer as Hk, where k ∈ {1, · · · , K}
and the input data are denoted as H0. In each layer, there are two parts of the parameters for us to
train, of which the weight matrix Wk connects the previous layer Hk−1 with Hk and the bias vector bk.

As shown in Figure 2, the input data is usually followed with the convolution layer. The convolution
layer first performs a convolution operation with the kernels Wk. Then, we add the bias vector bk with
the resulting feature maps. After obtaining the features, a pointwise non-linear activation operation
g(•) is usually performed subsequently. The size of the convolution kernels in our model is 3 × 3.
A pooling layer (e.g., taking the average or maximum of adjacent locations) is followed, which uses
the non-overlapping square windows per feature map to select the dominant features. The pooling
layer can reduce the number of network parameters and improve the robustness of the translation.
This layer offers invariance by reducing the resolution of the feature maps, and each pooling layer
corresponds to the previous convolutional layer. The neuron in the pooling layer combines a small
N × 1 patch of the convolution layer. The most common pooling operation is max pooling, which we
chose for our experiments. The entire process can be formulated as

Hk = pool
(

g
(

Hk−1 ∗Wk + bk

))
(1)

Remote Sens. 2017, 9, 936 4 of 17

∗ denotes the convolution operator and pool denotes the pooling operator.
The hierarchical feature extraction architecture is formed by stacking several convolution layers

and pooling layers one by one. Then, we combine the resultant features with the 1D features using
the FC layer. A fully connected layer takes all neurons in the previous layer and connects them to
every single neuron contained in the layer. It first processes its inputs with a linear transformation
by the weight Wk and the bias vector bk, and then, the pointwise non-linear activation is performed
as follows:

Hk = g
(

Hk−1 ∗Wk + bk

)
(2)

For the non-linear activation operation g(•), we use rectified linear units. Unlike binary units,
the rectified linear units (ReLU) [25] preserve information about the relative intensities as information
travels through multiple layers of features detectors. It uses a fast approximation where the sampled
value of the rectified linear unit is not constrained to be an integer. The function can be written as

g(x) = max(0, x) (3)

Training deep neural networks is complicated by the distribution of each layer’s inputs during the
training. Batch Normalization (BN) [26] allows us to use much higher learning rates, to be less careful
about initialization, and to prevent overfitting. Consider a mini-batch B of size m B = (x1, · · · , xm).
The BN transform is performed as follows:

yi = γ

xi − 1
m

m
∑

i=1
xi√

1
m

m
∑

i=1
(xi − 1

m

m
∑

i=1
xi) + ε

+ β (4)

γ and β are parameters to be learned and ε is a constant added for numerical stability.
The last classification layer is always a softmax layer, with the number of neurons equaling the

number of classes to be classified. Using a logistic regression layer with one neuron to perform binary
classification, the activation value represents the probability that the input belongs to the positive class.
The softmax layer guarantees that the output is a probability distribution, as the value for each label is
between 0 and 1 and all the values add up to 1. The multi-label problem is then seen as a regression on
the desired output label vectors.

If there is a set T of all possible classes, for the n training samples i = 1 . . . n, the loss function
L quantifies the misclassification by comparing the target label vectors yi and the predicted label
vectors ŷi. We use the common cross-entropy loss in this work, which is defined as

L = − 1
n

n

∑
i=1

|T|

∑
k=1

yi
k log ŷi

k (5)

The cross-entropy loss is numerically stable when coupled with the softmax normalization [27]
and has a fast convergence rates when training neural networks.

When the loss function is defined, the model parameters that minimize the loss should be
solved. The model parameters are composed by the weights W = {W1, · · · , Wk} and the biases
b = {b1, · · · , bk}. The back propagation algorithm is widely used to optimize these parameters.
It propagates the prediction error from the last layer to the first layer and optimize the parameters
according to the propagated error at each layer. The derivative of the parameters W and b can be
described as ∆W l =

(
∂L/∂W l

)
and ∆bl =

(
∂L/∂bl

)
, respectively. The loss function can be optimized

from the gradient of the parameters.

Remote Sens. 2017, 9, 936 5 of 17

2.2. Feature Image Generation

To match the CNN with our ALS data, a feature image-generation method was proposed. In Hu’s
method, each point Pk and its surrounding points within a “square window” were divided into
128 × 128 cells. The height relations among all the points within the cell are obtained and used to
generate images which are then used to train the CNN model. This area-based feature image-generation
method performed well in the DTM-generation task. However, the method may have problems
when facing the multi-objects semantic labeling task. Objects such as trees and roofs are difficult to
distinguish, so we proposed a single point-based feature image-generation method.

Like Hu’s method, we set up a square window for each ALS point Pk (coordinates are XPk , YPk and
ZPk) and divide the window into 128 × 128 cells. Based on the ALS dataset we choose the width of the
cell to be w. For each cell, instead of using the height relations between all points, we choose a unique
point and calculate the point based features. To find this unique point, we first need to calculate the
center coordinate of the cell. The coordinates Xi,j, Yi,j and Zi,j are calculated as follows:

Xi,j = XPk − (64.5− j) ∗ w

Yi,j = YPk − (64.5− i) ∗ w

Zi,j = ZPk

(6)

i denotes the row number, j denotes the column number and w is the width of the cell.
The unique point P′ i,j is the nearest point from the center. We calculate three types of features

based on this point, which are the local geometric features, global geometric features and full-waveform
LiDAR features as follows:

(1) We calculate the local geometric features. All the features are extracted in a sphere of radius
r. For a point Xi = (xi, yi, zi), based on its n neighboring points, we obtain a center of gravity

X = 1
n

n
∑

i=1
Xi. We then calculate the vector M =

(
X1 − X, · · · , Xn − X

)
. The variance–covariance

matrix is written as
C =

1
n

MT M (7)

(2) The Eigenvalues λ1>λ2>λ3 are calculated from the matrix. Using these eigenvalues we acquire
addition features [6,28] as follows:

Planarity : Pλ =
λ2 − λ3

λ1
(8)

Sphericity : Sλ =
λ3

λ1
. (9)

Chehata [6] confirmed that λ3 is the most important eigenvalue. The planar objects such as roofs
and roads have low values in λ3, while non-planar objects have high values. Therefore in planar
objects, the planarity Pλ is represented with high values. In contrast, the sphericity Sλ gives high
values for an isotropically distributed 3D neighborhood. These two features help to distinguish planar
objects such as roofs, façades, and roads easily from objects such as vegetation and cars.

The planarity of the local neighborhood is also the local geometric feature that will help
discriminate buildings from vegetation. The local plane ΠP is estimated using a robust M-estimator
with norm L1.2 [29]. For each point, we obtain a normal vector from the plane. Then, the angle between
the normal vector and the vertical direction can be calculated. We can obtain several angles from
the neighboring points within a sphere of radius r. Using the variance σ2

z of these angles helps us to
discriminate planar surfaces such as roads from vegetation.

Remote Sens. 2017, 9, 936 6 of 17

(1) We extract the global geometric features. We generate the DTM for the feature height above DTM
based on robust filtering [30], which is implemented in the commercial software package SCOP++.
The height above DTM represents the global distribution for a point and helps to classify the data.
Based on the analysis by Niemeyer [15], this feature is by far the most important since it is the
strongest and most discernible feature for all the classes and relations. For instance, this feature
has the capability to distinguish between a relation of points on a roof or on a road level.

(2) The full-waveform LiDAR features are also needed [31]. The chosen echo intensity values are
high on building roofs, on gravels roads, and on cars, while low values are asphalt roads and tar
streets [6], which makes these objects easy to distinguish.

After calculating the features from the point P′ i,j, we then transfer these features into three integers
from 0 to 255 as follows:

RED =
[
255 ∗ Sλ ∗ σ2

z
]

GREEN = [Intensity ∗ Pλ]

BLUE = [255 ∗ Habove]

(10)

Pλ and Sλ are normalized between 0 and 1 and are the eigenvalue-based features, σ2
z is normalized

between 0 and 1 and is the variance of the normal vector angle from the vertical direction, Habove is the
normalized height above DTM between 0 and 1, and Intensity is the echo intensity value normalized
between 0 and 255.

For each cell, the RED, GREEN and BLUE are mapped to a pixel with red, blue and green colors.
Then, the square window can be transferred to a 128 × 128 image. The steps of the feature image
generation are shown in Figure 3.

Remote Sens. 2017, 9, 936 6 of 17

the angle between the normal vector and the vertical direction can be calculated. We can obtain

several angles from the neighboring points within a sphere of radius r. Using the variance of

these angles helps us to discriminate planar surfaces such as roads from vegetation.

(1) We extract the global geometric features. We generate the DTM for the feature height above

DTM based on robust filtering [30], which is implemented in the commercial software package

SCOP++. The height above DTM represents the global distribution for a point and helps to

classify the data. Based on the analysis by Niemeyer [15], this feature is by far the most

important since it is the strongest and most discernible feature for all the classes and relations.

For instance, this feature has the capability to distinguish between a relation of points on a roof

or on a road level.

(2) The full-waveform LiDAR features are also needed [31]. The chosen echo intensity values are

high on building roofs, on gravels roads, and on cars, while low values are asphalt roads and

tar streets [6], which makes these objects easy to distinguish.

After calculating the features from the point , we then transfer these features into three

integers from 0 to 255 as follows:

 (10)

and are normalized between 0 and 1 and are the eigenvalue-based features, is

normalized between 0 and 1 and is the variance of the normal vector angle from the vertical

direction, is the normalized height above DTM between 0 and 1, and Intensity is the echo

intensity value normalized between 0 and 255.

For each cell, the RED, GREEN and BLUE are mapped to a pixel with red, blue and green

colors. Then, the square window can be transferred to a 128 × 128 image. The steps of the feature

image generation are shown in Figure 3.

Figure 3. Steps of the feature image generation.

The spatial context of the point is successfully transferred into an image by the

distribution of point

and its three types of features. The CNN model extracts the high-level

representations through these limited low-level feature images and performs well in the ALS point

clouds semantic labeling task.

2

z

'

,i j
P

2255

255

z

above

RED S

GREEN Intensity P

BLUE H

P

S

2

z

aboveH

128 cells

1
2

8

cells

Step1. For each point, set

up a square window and

divide it into 128*128cells.

Step2. For each cell, find the

nearest point from its center,

acquire the features and

calculate RED GREEN BLUE.

Step3. Map each cell to a

pixel and generate the

feature image.

k
P

'

,i j
P

Figure 3. Steps of the feature image generation.

The spatial context of the point Pk is successfully transferred into an image by the distribution
of point P′ i,j and its three types of features. The CNN model extracts the high-level representations
through these limited low-level feature images and performs well in the ALS point clouds semantic
labeling task.

2.3. Accuracy Evaluation

According to the benchmark rules, the overall accuracy and F1 score are used to assess the
performance of our resulting values. In the benchmark, the tp, fp and fn are true positive, false positive

Remote Sens. 2017, 9, 936 7 of 17

and false negative, respectively, and can be calculated using pixel-based confusion matrices per tile or
an accumulated confusion matrix. In each class, we compute the precision and recall as follows:

precision = tp
tp+ f p

recall = tp
tp+ f n

(11)

Then, the F1 score is calculated as

F1 = 2× precision× recall
precision + recall

(92)

The overall accuracy is the normalization of the trace from the confusion matrix.

3. Experimental Result

3.1. Dataset

We evaluate the proposed method on the ISPRS 3D semantic labeling contest [32], which is an
open benchmark dataset. The dataset that we use is acquired with the Leica ALS50 system over
Vaihigen, a small village in Germany [33]. This dataset has been presented in the scope of the ISPRS
Test Project on Urban Classification and 3D Building Reconstruction and simultaneously serves as the
benchmark dataset for the ISPRS benchmarks on 2D and 3D semantic labeling. The ALS50 system has
a mean flying height of 500 m above ground and a 45 degrees field of view. The point density in the
test area is approximately 8 points/m2. For the 3D semantic labeling, nine classes have been defined
and each point in the dataset is labeled accordingly. The reference labels are provided by the authors
of [15].

The given area is subdivided into two parts. The first area is treated as a training set and
has 753,876 labeled points. Nine semantic classes have been defined for the Vaihingen dataset,
which are the power-line, low vegetation, impervious surfaces, car, fence/hedge, roof, façade,
shrub, and tree. The second area is treated as the testing set and has 411,722 unlabeled points.
The training set is visualized in Figure 4a and contains the spatial XYZ-coordinates, intensity values,
the number of returns, and the reference labels. The test set is shown in Figure 4b, and only the spatial
XYZ-coordinates, intensity values and the number of returns are provided. More detailed information
is shown in Table 1.

Table 1. Number of 3D points per class.

Class Training Set Training Set Used Test Set

Powerline 546 546 N/A
Low Vegetation 180,850 18,005 N/A

Impervious Surfaces 193,723 19,516 N/A
Car 4614 4614 N/A

Fence/Hedge 12,070 12,070 N/A
Roof 152,045 15,235 N/A

Façade 27,250 13,731 N/A
Shrub 47,605 11,850 N/A
Tree 135,173 13,492 N/A

∑ 753,876 109,059 411,722

Remote Sens. 2017, 9, 936 8 of 17

Remote Sens. 2017, 9, 936 8 of 17

Figure 4. (a) The training set: the color encoding shows the assigned semantic class labels (Powerline:

blue; Low Vegetation: Navy; Impervious Surfaces: green; Car: lime; Fence/Hedge: lawngreen; Roof:

yellow; Façade: gold; Shrub: orange; Tree: red). (b) The testing set: The colors blue to red represent

the z values of the points.

3.2. Experiments

The experiments focus on using the presented local geometric features, global geometric

features and full-waveform features (Section 2.2) to generate the feature images. Then, these feature

images serve as the input for a CNN to perform the 3D semantic task (Section 2.1).

The unbalanced distribution of the training examples per class cloud have a detrimental effect

on the training process [34]. As a result, we use a class re-balancing method by randomly sampling

the training example to obtain the final training set. As shown in Table 1, we reduce the values of

any point numbers of the classes that are larger than 15,000. Classes such as the Powerline and Car

have point numbers of less than 15,000, so those values remain unmodified.

The batch gradient descent with a batch size of 128 examples, base learning rate of 0.01,

momentum of 0.9, and weight decay of 0.0005 to estimate the CNN parameters is used for training.

The training of the CNN model is performed on a PC with an NVIDIA Tesla K20c

Figure 4. (a) The training set: the color encoding shows the assigned semantic class labels (Powerline:
blue; Low Vegetation: Navy; Impervious Surfaces: green; Car: lime; Fence/Hedge: lawngreen; Roof:
yellow; Façade: gold; Shrub: orange; Tree: red). (b) The testing set: The colors blue to red represent the
z values of the points.

3.2. Experiments

The experiments focus on using the presented local geometric features, global geometric features
and full-waveform features (Section 2.2) to generate the feature images. Then, these feature images
serve as the input for a CNN to perform the 3D semantic task (Section 2.1).

The unbalanced distribution of the training examples per class cloud have a detrimental effect
on the training process [34]. As a result, we use a class re-balancing method by randomly sampling
the training example to obtain the final training set. As shown in Table 1, we reduce the values of any
point numbers of the classes that are larger than 15,000. Classes such as the Powerline and Car have
point numbers of less than 15,000, so those values remain unmodified.

The batch gradient descent with a batch size of 128 examples, base learning rate of 0.01,
momentum of 0.9, and weight decay of 0.0005 to estimate the CNN parameters is used for training.
The training of the CNN model is performed on a PC with an NVIDIA Tesla K20c.

We first use the five features that were discussed in Section 2.2 and set the width of cell 0.05 m.
Then, we consider the influence of the radius for the spherical neighborhood:

Remote Sens. 2017, 9, 936 9 of 17

• R0.5 indicates a radius of 0.5 m;
• R0.75 indicates a radius of 0.75 m;
• R1.0 indicates a radius of 1.0 m;
• R2.0 indicates a radius of 2.0 m;

The result for the influence of the radius is shown in Table 2.

Table 2. The recall value, the overall accuracy of each class and average F1 value for different
neighborhood radii in (%). Bold numbers show the highest values within the different radii.

Class R0.5 R0.75 R1.0 R2.0

Power 31.3 26.1 24.7 20.3
Low Vegetation 80.2 80.9 81.8 81.2

Impervious Surfaces 87.8 90.2 91.9 89.2
Car 59.3 71.2 69.3 64.2

Fence/Hedge 11.2 12.7 14.7 13.6
Roof 93.1 94.4 95.4 94.9

Façade 34.1 38.1 40.9 41.7
Shrub 36.4 37.7 38.2 38.3
Tree 77.5 77.9 78.5 78.1

Overall Accuracy 79.7 81.2 82.3 81.3
Average F1 60.5 61.3 61.6 60.7

Then we use the five features and set the neighborhood radius to 1 m to determine the influence
of the cell width:

• W0.025 indicates a cell width of 0.025 m;
• W0.05 indicates a cell width of 0.05 m;
• W0.075 indicates a cell width of 0.075 m;
• W0.1 indicates a cell width of 0.1 m;
• W0.2 indicates a cell width of 0.2 m.

The result for the influence of the cell width is shown in Table 3.

Table 3. The recall value, the overall accuracy of each class and the average F1 value for different cell
widths in (%). Bold numbers show the highest values within different features.

Class W0.025 W0.05 W0.075 W0.1 W0.2

Power 28.4 24.7 22.1 19.3 15.1
Low Vegetation 78.6 81.8 81.9 81.7 80.4

Impervious
Surfaces 90.2 91.9 90.4 88.6 83.6

Car 66.7 69.3 62.1 59.3 53.2
Fence/Hedge 18.3 14.7 14.3 10.9 9.5

Roof 93.1 95.4 95.5 95.8 96.3
Façade 40.2 40.9 35.9 36.3 39.3
Shrub 39.1 38.2 35.7 30.4 20.1
Tree 76.6 78.5 78.9 69.3 66.8

Overall Accuracy 80.4 82.3 81.7 79.6 77.2
Average F1 62.4 61.6 61.2 60.1 57.3

Finally, we set the neighborhood radius to 1 m and the cell width to 0.05 m to discuss the influence
of the selected feature:

• In the CNN_DEIV, we use all five features that were discussed in Section 2.2, D represents using
the feature height above DTM Habove, E represents using the two eigenvalue-based features Pλ and

Remote Sens. 2017, 9, 936 10 of 17

Sλ, I represents using the feature Intensity, and V represents using the feature variance of normal
vector angle from vertical direction σ2

z .
• In the CNN_GEIV, all the features we use are the same as the CNN_DEIV except for the feature

height above DTM Habove. G indicates that we add some Gaussian noise to the DTM.
• In the CNN_LEIV, all the features we use are the same as the CNN_DEIV except for the feature

height above DTM Habove. L indicates that we use the low accuracy DTM to replace the DTM in
the CNN_DEIV.

• In the CNN_DEI, all the features we use are the same as the CNN_DEIV except for the feature
variance of normal vector angle from vertical direction σ2

z , which is removed from the Equation (10).
• In the CNN_EI, all the features we use are the same as the CNN_DEI except for the feature height

above DTM Habove, which is removed from the Equation (10) and replaced with the relative height
difference. This feature is calculated from the difference between the height of a point and the
average height value in its neighborhood.

• In the CNN_E, all the features we use are the same as the CNN_EI except for the feature Intensity,
which is removed from the Equation (10) and replaced with the integer 255.

The result of influence of the different features is shown in Table 4, and the visualization of our
best result CNN_DEIV is shown in Figure 5.

We use all five features and set the neighborhood radius to 1 m, set the cell width to 0.05 m, and
then change the training samples:

• Sall uses all the samples to train the CNN model;
• Sreb uses re-balanced samples shown in Table 1;
• Srep repeats the sparser classes in Sreb that makes all the classes have 15,000 samples.

The results are shown in Table 5.

Table 4. The recall value, the overall accuracy of each class and the average F1 value for different
feature selections in (%). Bold numbers show the highest value within the different features.

Class CNN_DEIV CNN_GEIV CNN_LEIV CNN_DEI CNN_EI CNN_E

Power 24.7 24.3 22.7 20.5 17.2 23.0
Low Vegetation 81.8 81.9 78.3 82.0 75.4 63.1

Impervious Surfaces 91.9 91.7 79.2 88.7 80.0 49.6
Car 69.3 69.1 58.7 47.5 46.8 32.1

Fence/Hedge 14.7 15.3 17.8 15.9 20.3 19.4
Roof 95.4 95.0 84.0 92.3 83.6 84.5

Façade 40.9 40.8 45.3 46.4 44.9 47.6
Shrub 38.2 37.9 36.3 43.9 38.4 36.0
Tree 78.5 78.7 80.1 79.7 85.9 84.9

Overall Accuracy 82.3 82.2 75.5 81.0 75.7 65.1
Average F1 61.6 61.3 56.3 58.9 55.8 50.1

Table 5. The training time, testing time, overall accuracy and average F1 of our method for different
samples using the re-balancing method.

Samples Sall Sreb Srep

Training time (h) 43.1 6.5 7.2
Testing time (s) 70.2 70.4 69.7

Overall Accuracy (%) 80.2 82.3 82.2
Average F1 (%) 60.7 61.6 62.1

Remote Sens. 2017, 9, 936 11 of 17

Remote Sens. 2017, 9, 936 11 of 17

We submitted the CNN_DEIV result on the unlabeled test data to the ISPRS organizers for

evaluation. As shown in Table 6, we provided the precision for five main classes, recall and F1

values accompanied with the overall accuracy of all nine classes. These five classes occupy 89% of

the test set and are the key factor affecting the overall accuracy. Our method is WhuY3 (identical to

CNN_DEIV). The ISS_7 [35] uses supervoxels-based segmentation to segment the point cloud data

and uses a machine-learning algorithm to label the points. The HM_1 [36] uses conditional random

fields (CRF) to perform the semantic analysis of the ALS data. The UM [37] uses a genetic algorithm

based on the features extracted from the LiDAR point-attributes, textural analysis, and geometric

attributes for the 3D semantic labeling. The LUH [38] uses hierarchical conditional random fields

(HCRF) for the classification. The visual performance among the related methods is shown in Figure

6.

Table 6. Quantitative comparison between our method and other published methods on the ISPRS

test set. Bold numbers show the highest values within different methods.

Class Value ISS_7 HM_1 UM LUH WHUY3

Impervious Surfaces Precision 76.0 89.1 88.0 91.8 88.4

 Recall 96.5 94.2 90.3 90.4 91.9

 F1 85.0 91.5 89.1 91.1 90.1

Roof Precision 86.1 91.6 93.6 97.3 91.4

 Recall 96.2 91.5 90.5 91.3 95.4

 F1 90.9 91.6 92.0 94.2 93.4

Low Vegetation Precision 94.1 83.8 78.6 83.0 80.9

 Recall 49.9 65.9 79.5 72.7 81.8

 F1 65.2 73.8 79.0 77.5 81.4

Tree Precision 84.0 77.9 71.8 87.4 77.5

 Recall 68.8 82.6 85.2 79.1 78.5

 F1 75.6 80.2 77.9 83.1 78.0

Car Precision 76.3 51.4 89.6 86.4 58.4

 Recall 46.7 67.1 32.5 63.3 69.3

 F1 57.9 58.2 47.7 73.1 63.4

All five classes Average Precision 83.3 78.8 84.3 89.1 79.3

 Average Recall 71.6 80.3 75.6 79.4 83.4

 Average F1 74.9 79.1 77.1 83.8 81.3

All nine classes Overall Accuracy 76.2 80.5 80.8 81.6 82.3

Figure 5. The classification result of the CNN_DEIV.
Figure 5. The classification result of the CNN_DEIV.

3.3. ISPRS Benchmark Testing Results

We submitted the CNN_DEIV result on the unlabeled test data to the ISPRS organizers for
evaluation. As shown in Table 6, we provided the precision for five main classes, recall and F1 values
accompanied with the overall accuracy of all nine classes. These five classes occupy 89% of the test set
and are the key factor affecting the overall accuracy. Our method is WhuY3 (identical to CNN_DEIV).
The ISS_7 [35] uses supervoxels-based segmentation to segment the point cloud data and uses a
machine-learning algorithm to label the points. The HM_1 [36] uses conditional random fields (CRF)
to perform the semantic analysis of the ALS data. The UM [37] uses a genetic algorithm based on
the features extracted from the LiDAR point-attributes, textural analysis, and geometric attributes for
the 3D semantic labeling. The LUH [38] uses hierarchical conditional random fields (HCRF) for the
classification. The visual performance among the related methods is shown in Figure 6.

Table 6. Quantitative comparison between our method and other published methods on the ISPRS test
set. Bold numbers show the highest values within different methods.

Class Value ISS_7 HM_1 UM LUH WHUY3

Impervious Surfaces Precision 76.0 89.1 88.0 91.8 88.4
Recall 96.5 94.2 90.3 90.4 91.9

F1 85.0 91.5 89.1 91.1 90.1
Roof Precision 86.1 91.6 93.6 97.3 91.4

Recall 96.2 91.5 90.5 91.3 95.4
F1 90.9 91.6 92.0 94.2 93.4

Low Vegetation Precision 94.1 83.8 78.6 83.0 80.9
Recall 49.9 65.9 79.5 72.7 81.8

F1 65.2 73.8 79.0 77.5 81.4
Tree Precision 84.0 77.9 71.8 87.4 77.5

Recall 68.8 82.6 85.2 79.1 78.5
F1 75.6 80.2 77.9 83.1 78.0

Car Precision 76.3 51.4 89.6 86.4 58.4
Recall 46.7 67.1 32.5 63.3 69.3

F1 57.9 58.2 47.7 73.1 63.4
All five classes Average Precision 83.3 78.8 84.3 89.1 79.3

Average Recall 71.6 80.3 75.6 79.4 83.4
Average F1 74.9 79.1 77.1 83.8 81.3

All nine classes Overall Accuracy 76.2 80.5 80.8 81.6 82.3

Remote Sens. 2017, 9, 936 12 of 17

Remote Sens. 2017, 9, 936 12 of 17

Figure 6. Visual performance among related methods. Green represents the true classification

results, and red represents the false classification results.
Figure 6. Visual performance among related methods. Green represents the true classification results,
and red represents the false classification results.

Remote Sens. 2017, 9, 936 13 of 17

4. Discussion

There are three main parameters in our work: the neighborhood radius, the cell width, and the
feature selection. To determine the impact of the parameters on the classification result, we perform
three successive experiments in which we treat each parameter independently and show its influence
on all nine classes.

For the radius selection (Table 2), we choose four different radii from 0.5 m to 2.0 m. In general,
the overall accuracy and the average F1 have the highest value when the radius is 1 m. More specifically,
since the point density of each class is different, as the radius increases, the recall value of the power
line reduces, the recall values of the façade and shrub increase, and the recall values of the other
classes increase initially and then decrease. Although the radius of the neighborhoods does have some
influence on the classification, the overall accuracy and the average F1 of all radii show a relatively
good performance at approximately 81 and 61. This is because our method uses the features from the
point itself and the features from its surrounding cells. This neighborhood information may somehow
reduce the importance of the radius selection. Taking the overall accuracy and the average F1 into
consideration, we choose the radius of 1 m in the following experiments.

For the cell width selection (Table 3), we choose five different widths from 0.025 m to 0.2 m.
Since our method reconstructs the feature distribution around a point to an image, the width of the
cell is an important parameter in our framework. When the width is short, some objects, such as
power line, fence/hedge and shrubs, appear to have a higher recall value. In the meantime, the recall
values of the low vegetation, impervious surfaces and roof are lower. When the width is long, the roof
recall value has the best performance, but leads to significant loss in the tree and shrub values.
Taking the overall accuracy and the average F1 into consideration, we choose a width of 0.05 m in the
following experiments.

We replace or reduce the features in the CNN_DEIV to determine the influence of each feature
(Table 4). When some Gaussian noise is added to our DTM, indicated by CNN_GEIV, the overall
accuracy and the average F1 are slightly reduced. Therefore, our method has the ability to handle
noise in the DTM to some extent due to the point-based feature image generation. However, when the
accuracy of the DTM is low, as shown in CNN_LEIV, the results are not satisfactory. The recall values of
the low vegetation, impervious surface and roof all reduce. This may be due to ambiguities, since these
objects have a similar planar behavior. The same results appear when comparing the CNN_DEI with
the CNN_EI. Thus, we may state that the performance of the proposed method depends significantly
on the quality of the DTM. The overall accuracy and the average F1 are relatively low in CNN_E.
It is difficult to solve the misclassification of low vegetation and impervious surface using only the
eigenvalue-based features Pλ and Sλ, so we add the feature Intensity as indicated by CNN_EI. In this
case, the recall value of the low vegetation and impervious surface improves sharply. Although the
CNN_DEI performs well enough, the recall value of the cars (47.5%) is still relatively low. Therefore,
we add the feature variance of normal vector angle from vertical direction σ2

z which successfully solves
the problem (+21.8%). After these experiments, we find the proper values of the three parameters,
showing that the end results of our method CNN_DEIV perform well on overall accuracy (82.3%) and
average F1 (61.6%).

Our method has a satisfactory performance when compared with all the participants on the ISPRS
WG II/4 Vaihingen 3D Semantic Labeling task. The overall accuracy of our method is ranked 1st,
and the average F1 of the five main categories is ranked 2nd, for all the participants. Since the overall
accuracy is high, our method has the lowest proportion of red in Figure 6. It should be noted that
only five features are used in our final experiment, and the existing methods rely on several features
for the LiDAR points and the interaction of the neighboring points. For example, in the LUH [38],
Niemeyer used 35 elements in his feature vector. The convolutional networks exploit the potential of
the selected features as we expected. At the same time, the low quantities of the features may lead to
some misclassifications. Some objects, such as the powerline, fence/hedge and shrubs have relatively
low F1 scores. There also some faults in five main categories. We compare our method with the ground

Remote Sens. 2017, 9, 936 14 of 17

truth, and Figure 7 shows some failure classification from our method. In these areas, roofs are yellow,
trees are red, impervious surfaces are green, low vegetation is blue, and the cars are lime. We can see
that some trees and roofs are difficult to distinguish, some cars are wrongly classified as low vegetation,
and some impervious and low vegetation are mixed together. The unusual distribution of points and
the point density cause these misclassifications. Choosing the features, such as height variance, echo
features, point density and hierarchical features, that other methods used during our image-generation
process may improve the accuracy in similar cases. In addition, using the eigen-entropy maximization
in the neighborhood selection portion as Weinmann [9] did, may also improve the results.

Remote Sens. 2017, 9, 936 14 of 17

method with the ground truth, and Figure 7 shows some failure classification from our method. In

these areas, roofs are yellow, trees are red, impervious surfaces are green, low vegetation is blue, and

the cars are lime. We can see that some trees and roofs are difficult to distinguish, some cars are

wrongly classified as low vegetation, and some impervious and low vegetation are mixed together.

The unusual distribution of points and the point density cause these misclassifications. Choosing the

features, such as height variance, echo features, point density and hierarchical features, that other

methods used during our image-generation process may improve the accuracy in similar cases. In

addition, using the eigen-entropy maximization in the neighborhood selection portion as Weinmann

[9] did, may also improve the results.

In our framework, each point in the data is transferred into an image. Some points are close

enough to have the same feature images. Although we have taken the point spatial correlation into

consideration, there are still a few noisy points in our labeling result (Figure 7). In addition,

generating the feature image for each point can be resource-intensive and time-consuming, and the

computational effort in the CNN is high with a long training period (Table 5). We can use a

pre-segmentation technique, as Guninard [39] did, to reduce the computation burden. This process

divides the point clouds into smaller, connected subsets with sizes determined by the local

complexity. This helps to cope with the labeling noise and to reduce the number of feature images,

which may help to address our problems.

Figure 7. Failure classification. (a–c) are the ground results, while (d–f) are the corresponding

WhuY3 result.

5. Conclusions

In this paper, we propose a point-based feature image-generation method used by a CNN

model for ALS data semantic labeling. For each point in the ALS data, we generate the image based

on the features of its neighboring points. Then, a deep CNN model is used to train and classify the

feature images. Each point can be classified into nine categories by the deep CNN model.

Experiments on the ISPRS dataset confirm the capabilities of the proposed method compared with

Figure 7. Failure classification. (a–c) are the ground results, while (d–f) are the corresponding
WhuY3 result.

In our framework, each point in the data is transferred into an image. Some points are close
enough to have the same feature images. Although we have taken the point spatial correlation into
consideration, there are still a few noisy points in our labeling result (Figure 7). In addition, generating
the feature image for each point can be resource-intensive and time-consuming, and the computational
effort in the CNN is high with a long training period (Table 5). We can use a pre-segmentation
technique, as Guninard [39] did, to reduce the computation burden. This process divides the point
clouds into smaller, connected subsets with sizes determined by the local complexity. This helps to
cope with the labeling noise and to reduce the number of feature images, which may help to address
our problems.

5. Conclusions

In this paper, we propose a point-based feature image-generation method used by a CNN model
for ALS data semantic labeling. For each point in the ALS data, we generate the image based on the
features of its neighboring points. Then, a deep CNN model is used to train and classify the feature
images. Each point can be classified into nine categories by the deep CNN model. Experiments on the

Remote Sens. 2017, 9, 936 15 of 17

ISPRS dataset confirm the capabilities of the proposed method compared with state-of-the-art methods.
As shown in Table 6, the overall accuracy ranks 1st and the average F1 ranks 2nd compared with the
other considered approaches.

Our method still has the potential for improvement given that only five features are used in
our final experiment. There is a lot of work to do on the feature image-generation process, such as
using different kinds of features and choosing the optimal neighborhood. In future work, we will
take elements such as the height variance, echo features, point density, and hierarchical features into
consideration, and use a more robust optimal neighborhood, to further improve the performance and
to apply a segment-based method into our framework in order to reduce the computational burden
and time. In addition, we will also try to apply our model to more complex 3D segmentation tasks.

Acknowledgments: The labeled data was provided by Joachim Niemeyer, Institute of Photogrammetry and
GeoInformation, Leibniz Universität Hannover, Nienburger Str. 1, D-30167 Hannover, Germany. The partial
evaluations of results were provided by Markus Gerke, Utwente/ITC/EOS.

Author Contributions: Zhishuang Yang and Wanshou Jiang contributed to the study design and manuscript
writing; Zhishuang Yang and Bo Xu conceived and designed the experiments; Zhishuang Yang performed the
experiments; Quansheng Zhu and San Jiang contributed to the initial data and the analysis tools; and Wei Huang
contributed to partial codes of the algorithm.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: New York,
NY, USA, 2006; p. 049901.

2. Chan, C.W.; Paelinckx, D. Evaluation of random forest and adaboost tree-based ensemble classification and
spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ.
2008, 112, 2999–3011. [CrossRef]

3. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm.
Remote Sens. 2011, 66, 247–259. [CrossRef]

4. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
5. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification.

Pattern Recognit. Lett. 2003, 27, 294–300. [CrossRef]
6. Chehata, N.; Li, G.; Mallet, C. Airborne LiDAR feature selection for urban classification using random forests.

Geomat. Inf. Sci. Wuhan Univ. 2009, 38, 207–212.
7. Mallet, C. Analysis of Full-Waveform LiDAR Data for Urban Area Mapping. Ph.D Thesis, Télécom ParisTech,

Paris, France, 2010.
8. Mallet, C.; Bretar, F.; Roux, M.; Soergel, U.; Heipke, C. Relevance assessment of full-waveform LiDAR data

for urban area classification. ISPRS J. Photogramm. Remote Sens. 2011, 66, S71–S84. [CrossRef]
9. Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic point cloud interpretation based on optimal

neighborhoods, relevant features and efficient classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105,
286–304. [CrossRef]

10. Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.
IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 721–741. [CrossRef] [PubMed]

11. Kumar, S.; Hebert, M. Discriminative random fields. Int. J. Comput. Vis. 2006, 68, 179–201. [CrossRef]
12. Anguelov, D.; Taskarf, B.; Chatalbashev, V.; Koller, D.; Gupta, D.; Heitz, G.; Ng, A. In discriminative learning

of Markov random fields for segmentation of 3D scan data. In Proceedings of the Computer Vision and
Pattern Recognition, San Diego, CA, USA, 20–25 June 2005.

13. Shapovalov, R.; Velizhev, A.; Barinova, O. Non-associative Markov networks for 3D point cloud classification.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, XXXVIII, 103–108.

14. Rusu, R.B.; Holzbach, A.; Blodow, N.; Beetz, M. Fast geometric point labeling using conditional random
fields. In Proceedings of the Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009.

15. Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of LiDAR data and building object
detection in urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 87, 152–165. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2008.02.011
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.patrec.2005.08.011
http://dx.doi.org/10.1016/j.isprsjprs.2011.09.008
http://dx.doi.org/10.1016/j.isprsjprs.2015.01.016
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://www.ncbi.nlm.nih.gov/pubmed/22499653
http://dx.doi.org/10.1007/s11263-006-7007-9
http://dx.doi.org/10.1016/j.isprsjprs.2013.11.001

Remote Sens. 2017, 9, 936 16 of 17

16. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation
applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

17. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural
networks. In Proceedings of the Neural Information Processing Systems Conference, Lake Tahoe, NV, USA,
3–8 December 2012.

18. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
Available online: https://arxiv.org/abs/1409.1556 (accessed on 8 September 2017).

19. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P. Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015.

20. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 24–27 June 2014.

21. Boulch, A.; Saux, B.L.; Audebert, N. Unstructured point cloud semantic labeling using deep segmentation
networks. In Eurographics Workshop on 3D Object Retrieval; The Eurographics Association: Geneva,
Switzerland, 2017. [CrossRef]

22. Hackel, T.; Wegner, J.D.; Schindler, K. Fast semantic segmentation of 3D point clouds with strongly varying
density. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 177–187. [CrossRef]

23. Hu, X.; Yuan, Y. Deep-learning-based classification for DTM extraction from ALS point cloud. Remote Sens.
2016, 8, 730. [CrossRef]

24. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International
Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014.

25. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.

26. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In Proceedings of the 32nd International Conference on Machine Learning, Lile, France, 6–11 July 2015.

27. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
28. Demantké, J.; Mallet, C.; David, N.; Vallet, B. Dimensionality based scale selection in 3D LiDAR point clouds.

ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, W12. [CrossRef]
29. Xu, G.; Zhang, Z. Epipolar geometry in stereo, motion and object recognition. Comput. Imaging Vis. 1996, 6.

[CrossRef]
30. Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data.

ISPRS J. Photogramm. Remote Sens. 1998, 53, 193–203. [CrossRef]
31. Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of a

novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote Sens.
2006, 60, 100–112. [CrossRef]

32. International Society for Photogrammetry and Remote Sensing. 3D Semantic Labeling Contest. Available
online: http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html (accessed on
8 September 2017).

33. Cramer, M. The DGPF-test on digital airborne camera evaluation—Overview and test design. Photogramm.
Fernerkund. Geoinf. 2010, 2010, 73–82. [CrossRef] [PubMed]

34. Chen, C.; Breiman, L. Using Random Forest to Learn Imbalanced Data; 666; University of California, Berkeley:
Berkeley, CA, USA, 2004.

35. Ramiya, A.M.; Nidamanuri, R.R.; Ramakrishnan, K. A supervoxel-based spectro-spatial approach for 3d
urban point cloud labelling. Int. J. Remote Sens. 2016, 37, 4172–4200. [CrossRef]

36. Steinsiek, M.; Polewski, P.; Yao, W.; Krzystek, P. Semantische analyse von ALS- und MLS-daten in
urbanen gebieten mittels conditional random fields. In Proceedings of the 37. Wissenschaftlich-Technische
Jahrestagung der DGPF, Würzburg, Germany, 8–10 March 2017.

37. Horvat, D.; Žalik, B.; Mongus, D. Context-dependent detection of non-linearly distributed points for
vegetation classification in airborne lidar. ISPRS J. Photogramm. Remote Sens. 2016, 116, 1–14. [CrossRef]

38. Niemeyer, J.; Rottensteiner, F.; Soergel, U.; Heipke, C. Hierarchical higher order crf for the classification of
airborne lidar point clouds in urban areas. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016,
XLI-B3, 655–662. [CrossRef]

http://dx.doi.org/10.1162/neco.1989.1.4.541
https://arxiv.org/abs/1409.1556
http://dx.doi.org/10.2312/3dor.20171047
http://dx.doi.org/10.5194/isprsannals-III-3-177-2016
http://dx.doi.org/10.3390/rs8090730
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-5-W12-97-2011
http://dx.doi.org/10.1007/978-94-015-8668-9_5
http://dx.doi.org/10.1016/S0924-2716(98)00009-4
http://dx.doi.org/10.1016/j.isprsjprs.2005.12.001
http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html
http://dx.doi.org/10.1127/1432-8364/2010/0041
http://www.ncbi.nlm.nih.gov/pubmed/19508190
http://dx.doi.org/10.1080/01431161.2016.1211348
http://dx.doi.org/10.1016/j.isprsjprs.2016.02.011
http://dx.doi.org/10.5194/isprsarchives-XLI-B3-655-2016

Remote Sens. 2017, 9, 936 17 of 17

39. Guinard, S.; Landrieu, L. Weakly supervised segmentation-aided classification of urban scenes from 3D lidar
point clouds. In Proceedings of the ISPRS Workshop 2017, Hannover, Germany, 6–9 June 2017.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Convolutional Neural Network
	Feature Image Generation
	Accuracy Evaluation

	Experimental Result
	Dataset
	Experiments
	ISPRS Benchmark Testing Results

	Discussion
	Conclusions

